Chase Joyner

802 Homework 1

January 20, 2017

Consider the Gauss-Markov model

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}, \boldsymbol{\epsilon} \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right),
$$

where $\mathbf{X} \in \mathbb{R}^{n \times(k+1)}$ is of full-column rank (i.e., full rank with $k+1<n$) and both $\boldsymbol{\beta}$ and σ^{2} are unknown. Let $S S E$ denote the residual sum of squares from fitting this model.

1. Derive the maximum likelihood estimator of $\boldsymbol{\beta}$ and σ^{2}.

Solution: The likelihood function is $N\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}\right)$, i.e.

$$
L\left(\boldsymbol{\beta}, \sigma^{2} \mid \mathbf{y}\right) \propto\left(\sigma^{2}\right)^{-\frac{n}{2}} \exp \left\{-\frac{1}{2 \sigma^{2}}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})\right\} .
$$

Then, the log likelihood function is

$$
\begin{aligned}
\ell\left(\boldsymbol{\beta}, \sigma^{2} \mid \mathbf{y}\right) & \propto-\frac{n}{2} \log \sigma^{2}-\frac{1}{2 \sigma^{2}}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}) \\
& \propto-\frac{n}{2} \log \sigma^{2}-\frac{1}{2 \sigma^{2}}\left[\mathbf{y}^{\prime} \mathbf{y}-2 \boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \mathbf{y}+\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}\right]
\end{aligned}
$$

Differentiating the log likelihood function above, we have

$$
\begin{aligned}
\frac{d \ell}{d \boldsymbol{\beta}} & =\frac{1}{\sigma^{2}} \mathbf{X}^{\prime} \mathbf{y}-\frac{1}{\sigma^{2}} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta} \\
\frac{d \ell}{d \sigma^{2}} & =-\frac{n}{2} \frac{1}{\sigma^{2}}+\frac{1}{2\left(\sigma^{2}\right)^{2}}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})
\end{aligned}
$$

Setting these partial derivatives equal to zero and solving, the MLEs are

$$
\begin{aligned}
\widehat{\boldsymbol{\beta}} & =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y} \\
\widehat{\sigma^{2}} & =\frac{1}{n}(\mathbf{y}-\mathbf{X} \widehat{\boldsymbol{\beta}})^{\prime}(\mathbf{y}-\mathbf{X} \widehat{\boldsymbol{\beta}})=\frac{S S E}{n} .
\end{aligned}
$$

2. Check whether or not the MLE of σ^{2} is unbiased. If not, modify the MLE to get an unbiased estimator of σ^{2}.

Solution: We will show the MLE of σ^{2} is biased. First, notice that

$$
S S E=(\mathbf{y}-\mathbf{X} \widehat{\boldsymbol{\beta}})^{\prime}(\mathbf{y}-\mathbf{X} \widehat{\boldsymbol{\beta}})=\mathbf{y}^{\prime} \mathbf{y}-\widehat{\boldsymbol{\beta}}^{\prime} \mathbf{X}^{\prime} \mathbf{y}=\mathbf{y}^{\prime}\left(\mathbf{I}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right) \mathbf{y}
$$

Therefore, by a known result, we have that

$$
\begin{align*}
E[S S E] & =\operatorname{tr}\left[\left(\mathbf{I}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right) \sigma^{2} \mathbf{I}\right]+\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime}\left(\mathbf{I}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right) \mathbf{X} \boldsymbol{\beta} \\
& =\sigma^{2} \operatorname{tr}(\mathbf{I})-\sigma^{2} \operatorname{tr}\left(\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right)+0 \\
& =\sigma^{2} \cdot n-\sigma^{2} \cdot \operatorname{rank}(\mathbf{X}) \tag{1}\\
& =\sigma^{2} \cdot n-\sigma^{2} \cdot(k+1) \\
& =\sigma^{2}(n-k-1)
\end{align*}
$$

where (1) follows since $\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$ is a projection matrix onto $C(\mathbf{X})$. Thus, we have

$$
E\left[\widehat{\sigma^{2}}\right]=E\left[\frac{S S E}{n}\right]=\frac{1}{n} E[S S E]=\frac{n-k-1}{n} \sigma^{2}
$$

and hence the MLE is biased. Notice that if we change the MLE to

$$
\widehat{\sigma^{2}}=\frac{1}{n-k-1} S S E
$$

then it will be an unbiased estimator of σ^{2}.
3. Derive the distribution of $S S E / \sigma^{2}$.

Solution: Notice that $\mathbf{y} \sim N\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}\right)$. Also, let

$$
\mathbf{A}=\left(\mathbf{I}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right)
$$

and so from the first argument in part 2., we have

$$
\frac{S S E}{\sigma^{2}}=\frac{1}{\sigma^{2}} \mathbf{y}^{\prime} \mathbf{A} \mathbf{y}
$$

Next, we show \mathbf{A} is idempotent. Notice that

$$
\begin{aligned}
\mathbf{A A} & =\left(\mathbf{I}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right)\left(\mathbf{I}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right) \\
& =\mathbf{I}-2 \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}+\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \\
& =\mathbf{I}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \\
& =\mathbf{A}
\end{aligned}
$$

Thus, \mathbf{A} is idempontent and has rank $n-k-1$. Lastly, the noncentrality parameter is

$$
\frac{1}{2 \sigma^{2}} \boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \mathbf{A} \mathbf{X} \boldsymbol{\beta}=0
$$

and so the distribution of $S S E / \sigma^{2}$ is

$$
\frac{S S E}{\sigma^{2}} \sim \chi_{n-k-1}^{2}
$$

4. Partition the design matrix \mathbf{X} as $\mathbf{X}=\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)$, where $\mathbf{X}_{2} \in \mathbb{R}^{n \times h}, h \geq 1$. Keeping conformity, partition $\boldsymbol{\beta}^{T}=\left(\boldsymbol{\beta}_{1}^{T}, \boldsymbol{\beta}_{2}^{T}\right)$, as well. Let $S S E_{1}$ denote the residual of squares obtained by fitting $\mathbf{y}=\mathbf{X}_{1} \boldsymbol{\beta}_{1}^{\star}+\boldsymbol{\epsilon}$.
(a) Show that $S S E_{1} \geq S S E$.

Solution: First notice that we write

$$
\begin{aligned}
S S E & =\mathbf{y}^{\prime}\left(\mathbf{I}-\mathbf{P}_{C(\mathbf{X})}\right) \mathbf{y} \\
S S E_{1} & =\mathbf{y}^{\prime}\left(\mathbf{I}-\mathbf{P}_{C\left(\mathbf{x}_{1}\right)}\right) \mathbf{y}
\end{aligned}
$$

Recall in class that we showed

$$
\mathbf{P}_{C(\mathbf{X})}=\mathbf{P}_{C\left(\mathbf{X}_{1}\right)}+\mathbf{P}_{C(\mathbf{X}) \cap C^{\perp}\left(\mathbf{X}_{1}\right)}
$$

and from here it follows that

$$
\mathbf{P}_{C(\mathbf{X})}-\mathbf{P}_{C\left(\mathbf{X}_{1}\right)}=\mathbf{P}_{C(\mathbf{X}) \cap C^{\perp}\left(\mathbf{X}_{1}\right)}
$$

Using the property that all projection matrices are positive semidefinite, we have

$$
S S E_{1}-S S E=\mathbf{y}^{\prime}\left(\mathbf{P}_{C(\mathbf{X})}-\mathbf{P}_{C\left(\mathbf{X}_{1}\right)}\right) \mathbf{y}=\mathbf{y}^{\prime} \mathbf{P}_{C(\mathbf{X}) \cap C^{\perp}\left(\mathbf{X}_{1}\right)} \mathbf{y} \geq 0
$$

Therefore, we see that

$$
S S E_{1} \geq S S E
$$

(b) Show that $\left(S S E_{1}-S S E\right) / \sigma^{2}$ has a χ^{2} distribution. Find the degrees of freedom and the noncentrality parameter.

Solution: By part (a), we see that

$$
\frac{S S E_{1}-S S E}{\sigma^{2}}=\frac{1}{\sigma^{2}} \mathbf{y}^{\prime} \mathbf{P}_{C(\mathbf{X}) \cap C^{\perp}\left(\mathbf{X}_{1}\right)} \mathbf{y} \sim \chi_{d}^{2}(p)
$$

since $\mathbf{P}_{C(\mathbf{X}) \cap C^{\perp}\left(\mathbf{X}_{1}\right)}$ is a projection matrix and is therefore idempotent. The degrees of freedom d is given by

$$
\begin{aligned}
d & =\operatorname{rank}\left(\mathbf{P}_{C(\mathbf{X}) \cap C^{\perp}\left(\mathbf{X}_{1}\right)}\right)=\operatorname{tr}\left(\mathbf{P}_{C(\mathbf{X})}\right)-\operatorname{tr}\left(\mathbf{P}_{C\left(\mathbf{X}_{1}\right)}\right) \\
& =\operatorname{rank}(\mathbf{X})-\operatorname{rank}\left(\mathbf{X}_{1}\right)=h .
\end{aligned}
$$

The noncentrality parameter p is

$$
\begin{aligned}
p & =\frac{1}{2 \sigma^{2}} \boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \mathbf{P}_{C(\mathbf{X}) \cap C^{\perp}\left(\mathbf{X}_{1}\right)} \mathbf{X} \boldsymbol{\beta} \\
& =\frac{1}{2 \sigma^{2}} \boldsymbol{\beta}_{2}^{\prime} \mathbf{X}_{2}^{\prime} \mathbf{X}_{2} \boldsymbol{\beta}_{2}
\end{aligned}
$$

(c) Show that $S S E$ and $S S E_{1}-S S E$ are independent.

Solution: Again notice that we can write

$$
\begin{aligned}
S S E & =\mathbf{y}^{\prime}\left(\mathbf{I}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right) \mathbf{y}=\mathbf{y}^{\prime}\left(\mathbf{I}-\mathbf{P}_{C(\mathbf{X})}\right) \mathbf{y} \\
S S E_{1}-S S E & =\mathbf{y}^{\prime}\left(\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}-\mathbf{X}_{1}\left(\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{1}^{\prime}\right) \mathbf{y}=\mathbf{y}^{\prime} \mathbf{P}_{C(\mathbf{X}) \cap C^{\perp}\left(\mathbf{X}_{1}\right)} \mathbf{y} .
\end{aligned}
$$

Then, it is a known result that since $\mathbf{y} \sim N\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}\right)$, these are independent if and only if

$$
\begin{aligned}
\left(\mathbf{I}-\mathbf{P}_{C(\mathbf{X})}\right) \cdot \sigma^{2} \mathbf{I} \cdot \mathbf{P}_{C(\mathbf{X}) \cap C^{\perp}\left(\mathbf{X}_{1}\right)} & =\mathbf{0} \\
\Longleftrightarrow \quad\left(\mathbf{I}-\mathbf{P}_{C(\mathbf{X})}\right) \mathbf{P}_{C(\mathbf{X}) \cap C^{\perp}\left(\mathbf{X}_{1}\right)} & =\mathbf{0}
\end{aligned}
$$

This is clear since $C(\mathbf{X}) \cap C^{\perp}\left(\mathbf{X}_{1}\right) \subseteq C(\mathbf{X})$ and $\left(\mathbf{I}-\mathbf{P}_{C(\mathbf{X})}\right)=\mathbf{P}_{C^{\perp}(\mathbf{X})}$.
(d) Derive the likelihood ratio test statistic to test the hypothesis $H_{0}: \boldsymbol{\beta}_{2}=\mathbf{0}$ vs $H_{1}: \boldsymbol{\beta}_{2} \neq \mathbf{0}$.

Solution: First notice that the MLE for σ^{2} is a function of $\widehat{\boldsymbol{\beta}}_{1}$ and $\widehat{\boldsymbol{\beta}}_{2}$. Therefore, under the null hypothesis,

$$
{\widehat{\sigma^{2}}}_{0}=S S E_{1} / n
$$

Then, the likelihood ratio test statistic for this hypothesis is given by

$$
\begin{aligned}
\Lambda(\mathbf{y}) & =\frac{L\left(\widehat{\boldsymbol{\beta}_{1}}, \mathbf{0}, \widehat{\sigma^{2}}{ }_{0} \mid \mathbf{y}\right)}{L\left(\widehat{\boldsymbol{\beta}_{1}}, \widehat{\boldsymbol{\beta}_{2}}, \widehat{\sigma^{2}} \mid \mathbf{y}\right)}=\frac{\left(\widehat{\sigma^{2}}\right)^{-\frac{n}{2}} \exp \left\{-\frac{1}{2 \widehat{\sigma}_{0}^{2}}\left(\mathbf{y}-\mathbf{X}_{1} \widehat{\boldsymbol{\beta}}_{1}\right)^{\prime}\left(\mathbf{y}-\mathbf{X}_{1} \widehat{\boldsymbol{\beta}}_{1}\right)\right\}}{\left(\widehat{\sigma^{2}}\right)^{-\frac{n}{2}} \exp \left\{-\frac{1}{2 \widehat{\sigma}^{2}}(\mathbf{y}-\mathbf{X} \widehat{\boldsymbol{\beta}})^{\prime}(\mathbf{y}-\mathbf{X} \widehat{\boldsymbol{\beta}})\right\}} \\
& =\left(\frac{S S E_{1}}{S S E}\right)^{-\frac{n}{2}} \frac{\exp \left\{-\frac{n}{2}\right\}}{\exp \left\{-\frac{n}{2}\right\}}=\left(\frac{S S E_{1}}{S S E}\right)^{-\frac{n}{2}} .
\end{aligned}
$$

(e) Explicitly derive the level α rejection region of this likelihood ratio test.

Solution: Notice that we can rewrite the likelihood ratio test as

$$
\begin{aligned}
\Lambda(\mathbf{y}) & =\left(\frac{S S E_{1}}{S S E}\right)^{-\frac{n}{2}}=\left(\frac{S S E_{1}-S S E}{S S E}+1\right)^{-\frac{n}{2}} \\
& =\left(\frac{\left(S S E_{1}-S S E\right) / h}{S S E /(n-k-1)} \cdot \frac{h}{n-k-1}+1\right)^{-\frac{n}{2}} \\
& =\left(\frac{h}{n-k-1} \cdot F_{h, n-k-1}+1\right)^{-\frac{n}{2}}
\end{aligned}
$$

where we get the central $F_{h, n-k-1}$ statistic using the previous parts and the fact that under the null, the centrality parameter p in part (b) is 0 . Then, we notice that the likelihood ratio test statistic is monotone decreasing in the F statistic. As a consequence, high values of $F_{h, n-k-1}$ favors the full model, and reduces the value of $\Lambda(\mathbf{y})$, which also favors the full model. Therefore, they are equivalent tests and so the level α rejection region is given by $F_{1-\alpha, h, n-k-1}$ since everything else is just constant.

